Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-cost production of nanocellulose from diverse lignocellulosic feedstocks has become an important topic for developing sustainable nanomaterials. The available feedstocks include both woody and non-woody plants, where the latter are relatively underutilized. Interestingly, the porous structure and low lignin content in most non-woody plants, such as agricultural residues and natural fibers, also makes them ideal sources for lower energy nanocellulose production using simpler methods than those required to process woody plants. To enhance the goal of circularity, this review first provides an overview of the nanocellulose conversion from cellulose and then comprehensively discusses the use of non-woody feedstocks for nanocellulose production. Specifically, the availability of suitable non-woody feedstocks and the use of low-cost processes for pulping and cellulose oxidation treatments, including alkaline, solvent pulping, and nitrogen-oxidation treatments, are discussed. The information in this review can lead to new opportunities to achieve greater sustainability in biobased economies. Additionally, demonstrations of nanocellulose-based water purification technologies using agricultural residues derived remediation materials are highlighted at the end of this review.more » « less
-
Abstract Membrane technology remains the most energy‐efficient process for removing contaminants (micrometer‐size particles to angstrom‐size hydrated ions) from water. However, the current membrane technology, involving relatively expensive synthetic materials, is often nonsustainable for the poorest communities in the society. In this article, perspectives are provided on the emerging nanocellulose‐enabled membrane technology based on nanoscale cellulose fibers that can be extracted from almost any biomass. It is conceivable that nanocellulose membranes developed from inexpensive, abundant, and sustainable resources (such as agriculture residues and underutilized biomass waste) can lower the cost of membrane separation, as these membranes offer the ability to remove a range of pollutants in one step, via size exclusion and/or adsorption. The nanocellulose‐enabled membrane technology not only may be suitable for tackling global drinking water challenges, but it can also provide a new low‐cost platform for various pressure‐driven filtration techniques, such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Some relevant parameters that can control the filtration performance of nanocellulose‐enabled membranes are comprehensively discussed. A short review of the current state of development for nanocellulose membranes is also provided.more » « less
An official website of the United States government
